Hello and welcome to this week's article!
Today we're going to talk about a long-waited topic: how to mix a hi-gain guitar.
First off we must have the tracks already recorded on our computer with a sound that is already good enough, and to do this we have different methods already covered on other articles:
- By Microphoning an Amplifier
- By using a hardware Guitar Amp Simulator
- By using Vst Plugins
I've said "a sound that is already good enough" because the mixing process can enhance dramatically an existing sound, but it cannot completely transform a sound at the point to turn a lead into gold, so we're going to have excellent results only if the original sound is already good; if it's not good, don't settle, record again using another method until you're completely satisfied.
Execution is very important, as mixing can't do much about a poorly executed track, but after the recording phase, and before starting mixing, there is one last phase: Editing (Click Here for the full article), which is the phase where we adjust the tracks in order to, for example, correct the small timing discrepancies in the execution of a double tracked guitar, to make it sound more tight.
After we have accomplished all these preliminary tasks, we should have our guitar tracks nice and ready to be processed, being aware that guitars do accept processing pretty poorly: the more we will process them and set them afar from the original sound, the worse the final result will be, so we're gonna have to be smart and do as few moves as possible to enhance the sound just the right amount to make it perfect.
If we have two or four guitar tracks Panned left and right on our stereo field, we might consider to create a Stereo Group Channel track where to route all guitar tracks in order to apply the same processing to all of them without consuming too much CPU resources.
High Pass and Low Pass: first off we need to filter off the unneeded frequencies from our track, in order to carve in the spectrum a frequency range that will be reserved for the body of our guitars: we can start with a High Pass filter that takes out anything below 50hz, to leave room for the Bass, but if we feel that there is still some resonance or unwanted frequency that we can cut, we can go as far as 120hz without harming excessively our sound.
Then we must use a Low Pass filter (this step is even more important than the High Pass one), to shave off the frequencies until 12khz, but if we feel that there is still some "mosquito-like" frequency, we can go as far as 7,1 khz, leaving more room for cymbals and vocals.
Equalization - the guitar sound is a very unique combination of different elements: the execution, the wood, the pickups, string gauge, the recording method used and so on, therefore it's going to be very hard to record a track that will exactly match the sound of our favourite referencing track; the best we can do is to try to use a similar gear, but my advice is to do referencing and comparations farther in the mixing phase, in order to adjust the overall balance, and just try to get the best result possible from our base sound in this phase, since if we will try to completely distort our base sound to match a totally different one, we will end up with a disaster.
To get the best from our own sound we need a good pair of monitors and/or headphones, and a spectrum analizer: we can start taking down the peaks on the 100hz to 300hz area, since they are resonances created from the cab (real or simulated), which are unneeden and may even become harmful for our final sound;
then we should check on the area between 200hz and 500hz, which is the area where the aforementioned resonances are generated in smaller rooms, or by mid-focused guitar amps: if there are peaks or resonances here, we should lower them down of some db.
The next area is the "cardboard zone" between 500hz and 800hz: this is the area that is classically cut to create the famous "scooped sound" loved by metal players, but beware: to cut a few decibel will increase clarity and character, but if we scoop too much we will end up with a sound without body and "meat" (which is bad).
The 2khz to 4khz is the so-called Vocal Area, which is also the area our ears are tuned to hear better: if we boost the guitar here it is going to be heard more, but we should find, via the frequency analysis, the main Vocals frequency region and create some room, poking on our guitar Eq some db in the relative area, since the singer is the element in the mix that should never be obscured by the other instruments.
In conclusion it is vital here to find a compromise between making the Vocals to cut through and avoiding the "chug chug" of our guitars to disappear completely.
The last eq area is the residual part between 4hz and the frequency where the low pass filter kicks in: here we should sweep with the eq, boosting around until we find any possible "fizz" area that we can lower of some db: this area will vary according to the equipment used, but it can harm our mix, therefore it's a good idea to check it out.
After we have seen the theory behind each Eq region that may affect a Hi Gain guitar, here is a screenshot of a typical generic eq that may go on a hi-gain guitar buss, BEFORE sweeping to find the exact notches of resonances and fizzes to pin down, operation that is often done by adding a second Eq processor after this one:
One last word about boosting eq: this is a tricky matter, as it can make the guitar sound harsh and fake; many producers never boost a rhythm guitar, but sometimes the sound can be so flat that there may be the vital need to increase the sound's presence. We can choose wheter to boost with the eq, to excite some frequency or to add some saturation; as we're going to see on the second part of our tutorial, all of these thee methods will increase the presence of our sound.
CLICK HERE FOR THE PART 2/2 OF THIS TUTORIAL!
Become fan of this blog on Facebook! Share it and contact us to collaborate!!